Bottleneck sharing among wireless and Ethernet hosts

López Juan (UP) Rabadán Marcelo (UP- FAMIQ) Zaccardi Gonzalo (UNAJ-UP)

> 47 JAIIO – IETF Day 2018 Septiembre 3rd 2018 – Universidad de Palermo

- * Performance comparison among clients sharing the same bottleneck and the same network path.
- * But using different access technologies: Wifi vs Ethernet.

Measurement architecture

Tool:

Palermo Performance Analyzer

Unique features:

- * **Throughput limitation analysis:** network limited, source generation rate limited, flow control limited.
- * Server response times.
- * Asymmetric routing.
- Very high volume capability

Other features

- Round Trip Times.
- * Retransmissions.

* Passive measurements and analysis

Análisis

- Performance was compared individually for each of the Internet class C networks accessed from Wifi and Ethernet Clients.
- Networks considered: only those exchanging traffic volumes larger that configured threshold
- For each considered network, obtained Round Trip Times (HRTT), Throughput, and Retransmissions both for Wifi and Ethernet

Traffic origins (downloaded MBytes)

Most traffic coming from caches hosted in provider ISP (AMX)

Two Half Round Trip Times are measured.

INSIDE Half Round Trip Times

Latency due to local Ethernet (LABS) or local Wifi (APS) network.

IP	LABS (ms)	APS (ms)
170.51.248.0	0,949	55,665
172.217.30.0	1,019	18,341
31.13.94.0	1,174	28,189
131.100.108.0	6,226	21,003
192.16.48.0	0,511	41,12
54.230.227.0	1,682	40,539
13.107.4.0	0,568	7,618

local Ethernet (LABS): low local Wifi (APS): high!

Mainly affecting short transaction oriented connections (web)

Resultados HRTT OUTSIDE

Latency

Outside (same for Wifi and Ethernet)

- Bottleneck queuing (main outside latency)
- * Propagación delay.

Inside (much higher for Wifi clients):

- * Level 2 wifi retransmissions (wifi) caused by packet loss.
- * Transmit wait times due to shared access medium contention CSMA/CA.

Effects:

- Transaction oriented connections obtain lower performance in Wifi clients.
- * Web pages generally holding many objects, needing many transactions, take significantly longer.

Download Throughput NL

Measured for Network-limited connections.

Similar throughputs from each Internet class-C network for both Wifi and Ethernet.

ID	LABS	APS
IF	(Mbps)	(Mbps)
170.51.248.0	4,62	4,27
172.217.30.0	5,44	3,45
31.13.94.0	1,65	1,32
131.100.108.0	7,84	8,95
192.16.48.0	1,69	1,05
54.230.227.0	5,28	1,7
13.107.4.0	0,51	1,14

Throughput

 Similar results for both Wifi and Ethernet Clients when compared for same origin Internet networks.

TCP adapts similarly for both client types, being mainly affected by common shared bottleneck.

*

Conclusions

- Different access technologies (WIFI/LAN) obtain different performances when communicating with the same Internet servers, even when reaching them through the same path.
- Transaction oriented connections (i.e. WEB), obtained total times 25%-30% larger in WIFI.
- * Long connections (i.e. downloads) obtain similar performances (throughput).
- * Level 4 Retransmissions are similar for both Wifi and Ethernet (extra wifi losses are solved al level 2 and not seen in level 4).

Bottleneck sharing among wireless and ethernet hosts

;Thanks!